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SUMMARY 

In this paper, the global linearization (inversion) of rigid-body rotational dynamics is 
reviewed and representations in terms of quaternions and direction cosines are compared. Certain 
properties common to quaternions and direction cosines that make their use preferable to Euler 
angles and that simplify the inversion procedure are described. Applications of the inversion proce-. 
dure for state estimation and attitude control are discussed. To avoid complexities caused by aerody- 
namics, an example of direct inversion for linear feedback control of spacecraft attitude is given. 

INTRODUCTION 

The problem of linearization of nonlinear systems by inversion has received much attention 
in the past several years, especially in aerospace and robotic control applications (refs. 1-5). The 
inversion procedure has also been shown to be advantageous for use in state-estimation applications 
(refs. 6 and 7). It is unnecessary to elaborate upon the desirability of using linear methodolgy for 
control or estimation of a nonlinear system. Ideally, the linearization results in an exact cancellation 
of nonlinear terms; it can be thought of as a nonlinear version of pole-zero cancellation. For repre- 
sentations of rigid-body dynamics without aerodynamic effects, the inversion is achieved by apply- 
ing coordinate transformations. 

This paper addresses the inversion of rigid-body rotational dynamics and illustrates its appli- 
cation for attitude formulations in terms of direction cosines and quaternions. (It is well-known that 
an Euler-angle formulation, although readily invertible, is unsuitable for representing large-angle 
maneuvers.) The intent of the paper is partly tutorial; it reveals the similarities in structure and the 
differences in performance for the two attitude formulations considered. However, some apparently 
little-known properties shared by the quaternion and direction-cosine formulations are described that 
lead to the realization of a new model-follower control system that exhibits exact linear attitude-error 
dynamics. 

The paper consists of four major sections. In the first section, a way of expressing the 
direction-cosine kinematic equation is described that simplifies its inversion. An application for 
flight-data state estimation is suggested, and an example of spacecraft attitude control is given. A 
parallel treatment of a quaternion attitude formulation is provided in the following section, with the 
same applications. In the third section, a method is derived to realize exact linear attitude-error 
dynamics. Finally, in a separate section, simulation results for the control-system examples are pres- 
ented and the actual performance of the formulations is compared and correlated with the error 
analyses made in previous sections. 



DIRECTION-COSINE FORMULATION 

CB, = 

Consider first the matrix that rotates a vector from an inertial frame I into a body frame B 
with the usual Euler-angle sequence (y, 8, (9) given by (ref. 8) 

- case cosy cos 8 sin y -sine - 
sincpsin8 cosy singsin8 siny sincpcose 

cos cp cos e 

- coscp siny 

cos cp sin 8 cos y 
- +sincpsiny - sin9 cosy 4 

+ coscp cosy 

coscp sin 8 sin y 

Now, to eliminate dependence on trigonometric functions of the Euler angles, the rotation mamx can 
be formulated in terms of its column vectors as 

where the (ci,) are the direction cosines. 

The usual way to express the kinematic equation that describes the evolution of the direction 
cosines when the body is rotating with angular velocity o with respect to the inertial frame is 

where the cross-product operator is a matrix defined as 

0 -r q 
(ox)=[-; ; -€)I (4) 

In this case, the objective of inversion is to determine if there exists some transformation of 
variables that will permit o and its derivative to be expressed in terms of the direction-cosine ele- 
ments and their derivatives, such that the state equations are linear. Although the orthogonality prop- 
erty of CBI can be used to solve equation 3 for the mamx (o x), it is convenient to express the 
direction-cosine elements as the 9x 1 vector 

c = [c;c;c:l' 

and use the equivalent kinematic equation 

2 



c=co, c =  c2x (6)  [:::I 
to demonstrate the inversion procedure. First, multiply both sides of equation 6 by Ct, and use the 
identity 

to obtain the expression for angular velocity 

Next, differentiate both sides of equation 8, and use the identities 

C'c=O, CtC=O (9) 

to obtain the expression for angular acceleration 

The diagram in figure l(a) serves to illustrate how these results might be used in a state- 
estimation application for flight-data filtering or smoothing. In the estimation problem, the input w 
and the initial conditions (in the smoothing case) are provided by the estimation algorithm. Note that 
the state equations are linear (represented by decoupled integrator strings), and that nonlinearities 
appear only in the expressions for the outputs (Euler angles, angular rates, and accelerations). The 
Euler angles are determined in the block labeled A, from the relations 

A formulation like that shown in figure l(a) significantly improves the efficiency of the state- 
estimation algorithms (refs. 6 and 7). 

Note that while o and cb are expressed in terms of c, c, and c , the system is truly invertible 
only if the constraints among the (Ci j )  can be maintained. In practice, only two columns (six ele- 
ments) of the rotation matrix must be determined by solving differential equations - the third column 
of the matrix can be determined from 

while the remaining orthogonality constraints 
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can be realized by adding to the output list the quantities cicl, cbc2, c!c2, and including with the 
measurement set three corresponding pseudo measurement records contaming 1, 1, and 0, 
respectively. 

Representation of Attitude Error 

In attitude estimation or control applications, there is a need for a practical definition of atti- 
tude error. In terms of direction cosines, a useful error measure is given by expression 

EC = Ctc */2 (14) 

where c* is a commanded (or estimated) attitude. The identity of equation 9 indicates that when 
c = c*, the error is zero. Now, it is easy to show that 

lc12 - c211 

where the (Ci j )  are elements of the matrix 

CBB* = CBICIB* 

which represents the rotation from the commanded axes (B*) to the vehicle body axes (B). Meyer 
(ref. 9) has shown that the measure of equation 14 is a parameterization of a single rotation about the 
Euler axis corresponding to CBB*, and has used the measure in the design of attitude-control 
systems. 

A Control Example 

To illustrate, suppose that it is desired to synthesize a control law for spacecraft attitude in 
terms of direction cosines. Let ‘t denote an applied external torque, which is to be computed from 

z = J ~ + w  x J o (17) 

where J is the spacecraft inertia matrix. A linear control law that will produce the torque necessary 
for a stable response is given by 

where ag, a1 are scalars adjusted to achieve reasonable transient performance. Note that although 
the control law is linear, the attitude-error dynamics are nonlinear. This control law has been used by 
Meyer (refs. 1 and 9), who has shown it to be asymptotically stable for ag, a1 > 0. 
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The resulting attitude control system is shown in the block diagram of figure 2(a). It is read- 
ily verified that for an initial attitude of (0 = 8 = y = 0, the initial errors are given by 

.. 
e c = [  sin (p* 1, ec=[sin:*], 0 e.=[ 0 0 ] 

sin y~ * 

for single-axis rotation commands of (p*, e*, and y ~ * ,  respectively. Hence, the control system should 
follow any single-axis rotation commands within the range fl8Oo. 

. QUATERNION FORMULATION 

Euler’s theorem states that any orientation of a body frame B with respect to an inertial frame 
I can be expressed as a single rotation about some axis through their common origin. That orienta- 
tion can be represented by a set of four parameters called quaternions. The quaternion vector is 
(ref. 10) 

e = [ele2e3e4]t (20) 

where 

e i  = d i  sina/2, i = 1,2,3, e4 = COS a/2 (21) 

In equation 21, a is the rotation about the Euler axis, and the (di) are the direction cosines of the 
Euler axis with respect to the inertial frame. There is only one constraint among the quaternion 
elements: 

e te  = 1 (22) 

It should be mentioned that the rotation matrix of equation 1 can also be expressed in terms of the 
quaternion elements as (ref. 10) 

1 - 2(e; + e:) 2(e e + e e4) 2( e e3 - e2 e4) 
2(ele2-e3e4) 1-2(e:+e:) 2(e2t3+ele4)  

2(ele3 + e2e4) 2(e2e3- e1e4) 1 - 2(e: +e$) 

The attitude dynamics in a quaternion formulation are conveniently described by the kine- 
matic equation 
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e = E o / 2 ,  E t =  
e2-el e4-e3 

It is of interest to observe (and perhaps it should be anticipated) that a set of identities similar to 
those given in equations 7 and 9 also exists for a quaternion attitude foxmulation. The quaternion set 
is 

EtE=I, ,  Ete=O, E t e = O  (25) 

To see how this formulation may be inverted, note the identities above and proceed as in the previ- 
ous inversion to obtain' the angular velocity and acceleration, which in this case are given by 

The corresponding state-estimation model for the quaternion attitude formulation is shown in 
figure l(b). To realize the magnitude constraint of equation 22, the left side can be added to the out- 
put list, and a measurement record of 1's added to the measurement set. Here there are only four 
variables to be determined by solving differential equations, with one additional measurement, com- 
pared to six variables with three additional measurements in the direction-cosine formulation. The 
question of which formulation would be preferable for a particular filtering or smoothing application, 
however, could depend on how often the rotation matrix had to be calculated. Implementation of the 
models shown in figures l(a) and (b) is a subject of ongoing research. 

A Control Example 

A useful measure of attitude error in a quaternion formulation is given by 

& e  = 2Et e * 

where e* is the attitude command. The identify of equation 25 indicates that when e = e*, the error 
is zero. The special properties of this measure lead to the exact linearization procedure to be dis- 
cussed in the next section. First, however, consider its use with a feedback control system like that 
shown in figure 2(a), but based on quaternions. Such a system has been described by Wie et al. 
(ref. 1 l), and is included here as an example to facilitate a comparison of the direction-cosine and 
quaternion formulations. It also uses a linear control law 

where as before, ag, a1 are scalars. Wie has shown that this nonlinear system is asymptotically stable 
for ag, a1 > 0. 

A block diagram for the quaternion control system is shown in figure 2(b). In this case, for an 
initial body attitude of cp = 8 = yt = 0, the attitude error becomes 
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For single-axis rotation commands of (p*, e*, w* the initial errors are given by 

which implies that the quaternion control system can follow any rotation command within f360". 

An Exact Linearization 

The direction-cosine and quaternion attitude-control examples considered in previous sec- 
tions exhibit nonlinear dynamics for large errors. In this section, so= properties of the quaternion 
error measure are described that make it possible to realize an exact linearization of the error dynam- 
ics for cither formulation. The results reported here represent an extension of the work of Dwyer 
(ref. 3). 

To begin, define a vector e (with elements el,ez,eg), and a 3x3 matrix E as 

where E* is the matrix in the quaternion kinematics of equation 24 with e, the actual body attitude, 
replaced by e*, the commanded attitude. Note that e is proportional to the quaternion attitude-error 
measure of equation 27. From the definitions given in equation 31 it follows that 

It should be apparent from equations 31 and 32 that when e = e*, that e = 0, h = 1, and that E is 
the unit matrix. 

The derivation of the linearization procedure depends on observing that 

E = ( e  x)+X13 ,  E e = h e  (33) 

(therefore h is an eigenvalue and e is a corresponding eigenvector of E),  and 

7 



E - ]  = Et+ e e t lh  , E - ]  E t  = e,,, (34) 

where CBB* is the attitude-error rotation mamx mentioned earlier. Now, if the error in angular rate 
is defined as 

where a* is the commanded rate, equations 24,34, and 35 can be used to derive the error kinematic 
equation as 

e = E  w/2 (36) 

Hence, e can be thought of as making up the first three elements of an attitude-error quaternion, with 
h being the fourth quaternion element. 

To complete the inversion derivation, first differentiate equation 35 and express the body 
coordinates of angular acceleration as 

O=CBB*O*+(CBB*O*)XCO+~~) (37) 
where Ci, * is the commanded acceleration, and then differentiate equation 36 and solve for iC, as 
the expression 

Finally, to achieve an exact linear attitude-error response corresponding to 

e+al e+ a. e = 0 (or E,+alie+aoE, = 0) (39) 

substitute for e in equation 38 and use equation 34 to obtain the feedback control law 

With the control law of equation 40, the quaternion system exhibits an pxact linear error 
response for large errors. Note, however, that h = 0 for attitude errors of f180". Hence, linearity is 
achieved at the expense of angular range for the quaternion system. An attitude-control system 
implemented with direction cosines can also be designed to exhibit the Same linear response, since it 
can be shown that 

E, = e,/h, h2 = (1 + ~ t  ~ * ) / 4  (41) 

The expression in equation 41 that relates h to the trace of the error-rotation matrix is an identity 
(ref. 10). Note that h2 = 1 when c = c*. The corresponding control law for the direction-cosine 
system is given by 
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The linearization procedure described here is applicable to model-follower feedback control 
systems (ref. 1). Its implementation for practical applications is a subject of current interest. How- 
ever, to linearize the simple attitude-control systems shown in figure 2, where the commanded rate 
and acceleration are zero, simply replace ag with the appropriate time-varying gain a (from eqs. 40 
or 42, with w = a). The quaternion version of the exact linear-error system was used to obtain the 
simulation results presented in the next section. 

SIMULATION RESULTS 

For the attitude-control simulations prepared for this section, it was assumed that the space- 
craft inertia mamx was known exactly. The e,rror analyses given in previous sections indicate that 
the two linear feedback attitude-control system formulations will exhibit similar (nearly linear) per- 
formance for small-angle commands. Therefore, the system gains for those simulations as well as the 
exact linear-error simulation were adjusted to obtain critical damping, with ag = 4, a1 = 4 (poles at 
-2 radsec). The commands were given in terms of Euler angles, which were then converted to corre- 
sponding commands c* or e*. 

Recall that the direction-cosine system of figure 2(a) is limited to following commands in the 
range f180', while the quaternion system of figure 2(b) can follow commands in the range +360". 
Although these facts are well known to industry practitioners, they are worthwhile emphasizing here. 
The performance of the two systems for roll-angle commands of 270' is shown in figure 3(a). The 
important difference in the direction-cosine and quaternion formulations, however, is that the latter 
exhibits a maximum attitude error amplitude for commands of f180', for which the former system 
exhibits no error at all. The quaternion system should, therefore, be more robust in responding to 
large-angle commands. This property is demonstrated by the responses of the two systems for roll 
commands of 170' shown in figure 3(b). 

The exact linear-error simulation was run for a command of -90' in both yaw and pitch, 
which corresponds to an initial condition for el,ez,ejl and h of 0.5. The results are shown in fig- 
ure 4. Notice that the responses for the { e i )  are identical, and different from h (h must satisfy the 
quaternion magnitude constraint). The responses of all systems to roll commands of lo', shown in 
figure 5(a), are almost identical, as predicted. Finally, the responses of all three simulations to roll- 
angle commands of 170' are shown for comparison in figure 5(b). The exact linear-error simulation 
is seen to exhibit the most robust performance, as should be expected. Note that although the error 
quaternion elements of equation 3 1 exhibit the desired linear response to a command, the attitude 
behavior in an Euler-angle sense is nonlinear as determined by the relations defined in equation 11. 
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CONCLUDING REMARKS 

This paper has outlined some useful properties of direction-cosine and quaternion formula- 
tions that simplify the linearization of rigid-body rotational dynamics. Applications of the inversion 
procedure have been given for both estimation and control examples. Error analyses and simulation 
results for spacecraft attitude-control systems have been presented that demonstrate the more robust 
performance obtainable from an exact linear-error formulation over that obtained from either 
direction-cosine and quarternion formulations with simple linear feedback control laws. 
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Figure 1. Attitude estimation models for flight-data filtering or smoothing applications. a) Direction- 
cosine formulation; b) quaternion formulation. 
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Figure 2. Spacecraft attitude control systems. a) Direction-cosine formulation; b) quaternion 
formulation. 
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